期刊专题

10.3969/j.issn.1671-1815.2013.11.017

极限学习机优化方法在蛋白质折叠类型识别中的应用

引用
传统的机器学习方法在处理蛋白质折叠类型识别问题时需要花费大量的时间来调节最佳的参数.利用一种新的极限学习机(Extreme Learning Machine,ELM)分类优化方法(Extreme Learning Machine for Classification,ELMC)对蛋白质折叠进行识别,仅需调节很少的参数值就可达到很好的测试精度.与支持向量机(Support Vector Machine,SVM)和推荐相关向量机(Relevance Vector Machine,RVM)相比,ELMC能获得更好的泛化性能,而且在寻找最优解的训练时间比较上,ELMC比SVM平均要快35倍,比RVM要快12倍.

蛋白质折叠识别、ELM分类优化方法、多类分类

13

TP315(计算技术、计算机技术)

2013-05-30(万方平台首次上网日期,不代表论文的发表时间)

共5页

3002-3005,3011

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

13

2013,13(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn