期刊专题

10.3969/j.issn.1671-1815.2012.01.029

一类带有Neumann边界的奇异拟线性椭圆方程解的存在性

引用
应用变分方法中的极值理论来研究Neumann边界问题{ -div(|x|α|▽u|p-2▽u)=|x|βup(α,β)-1-λ|x|γup-1+|x|μq-1,u(x)>0,x∈Ω|▽u|p-2?u/?u=0, x∈?Ω其中Ω是RN(N≥3)中具有C2光滑边界的有界区域,0 ∈Ω,n表示(e)Ω的单位外法向向量,且1<p<N,α<0,β<0,使得p(α,β)(△)p(N+β)/N-p+α>P,γ>α-p,P<q<p(α,μ).对于参数α,β,γ及μ的不同范围,建立上述方程解的存在性结果.其中对参数不同范围的讨论对解的存在性所起到的至关重要的作用.

奇异拟线形椭圆方程、Caffarelli-Kohn-Nirenberg不等式、临界指标、基态解

12

O175.8(数学分析)

2011年度解放军理工大学理学院青年科研基金和国家863计划重点基金

2012-05-14(万方平台首次上网日期,不代表论文的发表时间)

共4页

129-132

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

12

2012,12(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn