期刊专题

10.3969/j.issn.1671-1815.2011.06.046

SVM网页分类中一种新的特征提取方法

引用
随着互联网的迅速发展,对网页正确分类显得越来越重要.网页分类的一个难点就是特征空间的维数比较大,支持向量机(SVM)分类方法显示出比其它分类方法更好的性能,但是训练样本时却花费了比其它算法更多的时间.提出了一种基于选择最确信的词来预测一个文本的类别的特征提取方法,通过中文文本实验,结果表明在不降低分类准确性的前提下,缩短了训练时间.

特征提取、Web分类、支持向量机

11

TP311.11(计算技术、计算机技术)

2011-04-29(万方平台首次上网日期,不代表论文的发表时间)

共4页

1359-1362

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

11

2011,11(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn