期刊专题

10.3969/j.issn.1671-1815.2010.27.022

立方图中的路因子和圈因子

引用
给定连通图集合Φ,对图G的生成子图F,如果F的每个分支都同构于集合Φ的一个元素,则F被称为G的Φ-因子.最近Kawarabayashi 等证明了:2-连通立方图有一个{Cn|n≥4}-因子和{pn|n≥6}-因子,其中Cn表示阶为n的圈,Pn表示阶为n的路.Kano等给出了每一个阶至少为8的立方偶图有{Cn|n≥6}-因子和{pn|n≥8}-因子的结论,并且提出猜想:阶至少为6的3-连通立方图有{Cn|n≥5}-因子和{pn|n≥7}-因子.现给出这个猜想的证明.

路因子、圈因子、立方图、正则图

10

O157.5(代数、数论、组合理论)

2010-11-04(万方平台首次上网日期,不代表论文的发表时间)

共3页

6709-6711

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

10

2010,10(27)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn