期刊专题

10.3969/j.issn.1671-1815.2010.17.021

一种基于Gabor滤波器组和LBP的多特征联合SAR纹理图像分类方法

引用
实现能够使先进飞行器根据获取的图像自动识别不同的地貌景物,是一种具有实际应用前景的技术需求.提出了联合Gabor滤波器组和局部二值模式来对SAR纹理图像进行分类的新方法SARICIT (SAR Image Classification using Inquiry Table).首先对第一套带类标的训练图像集提取两种特征,分别使用的基于非监督和监督模式相融合的混合神经网络分类器进行训练,然后使用第二套带类标的训练图像集制作二维分类信息查询表,记录两种分类器对每一幅图像的判断结果.在实际进行分类阶段,对新图像提取Gabor和LBP两种纹理特征,输入训练好的分类器.根据两种分类器给出的类型响应,结合查询表,使用一种投票的机制来确定待分类的图像的纹理属性.通过对真实SAR图像的实验结果表明,与流行的单独使用一种纹理特征进行分类相比,新方法能够对SAR图像纹理做到更准确的分类,对雷达图像更具有适用性.

合成孔径雷达(SAR)纹理图像分类、Gabor滤波器、局部二值模式、混合神经网络

10

TP751.1(遥感技术)

2010-08-16(万方平台首次上网日期,不代表论文的发表时间)

共6页

4196-4201

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

10

2010,10(17)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn