期刊专题

10.3969/j.issn.1671-1815.2010.16.051

遗传算法与蚁群算法的融合研究

引用
遗传算法具有快速全局搜索能力,但对于系统中的反馈信息却没有利用,往往导致无为的冗余迭代,求解效率不高.而蚁群算法是通过信息素的累积和更新来收敛于最优路径,具有分布、并行、全局收敛能力,但是搜索初期信息素匮乏,导致算法速度慢.通过将两种算法进行融合,克服两种算法各自的缺陷,优势互补,形成一种时间效率和求解效率都比较好的启发式算法.并通过仿真计算,表明融合算法的性能优于遗传算法和蚁群算法.

遗传算法、蚁群算法、融合、优化

10

TP183(自动化基础理论)

国家重点实验室开放基金KF09091

2010-07-12(万方平台首次上网日期,不代表论文的发表时间)

共4页

4017-4020

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

10

2010,10(16)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn