期刊专题

10.3969/j.issn.1671-1815.2009.23.014

基于改进RBFNN的SOFC辨识建模

引用
针对现有的固体氧化物燃料电池(SOFC)模型过于复杂,难以满足控制系统的设计需要的弊端,基于一种改进的径向基函数神经网络(RBFNN)辨识技术建立了SOFC的非线性模型.在建模过程中,以SOFC的燃料利用率为模型的输入,电压和电流为模型输出.利用800组实验数据作为训练样本,建立了SOFC的电流-电压辨识模型.仿真结果表明了所建模型的有效性和精度.该模型的建立为先进的控制策略研究奠定了基础.

固体氧化物燃料电池(SOFC)、径向基函数神经网络(RBFNN)、建模、辨识

9

TM911.41

上海海洋大学博士生科学基金A-3605-08-0294;上海优秀青年科学基金B-8101-09-0034

2010-01-18(万方平台首次上网日期,不代表论文的发表时间)

共5页

7012-7016

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

9

2009,9(23)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn