期刊专题

改进模糊聚类算法在入侵检测中的应用

引用
在模糊c均值算法基础上,提出一种将粒子群算法与c均值算法相结合产生基于自适应粒子群优化的模糊聚类算法(APFC).用KDD cup99数据集进行评估模糊c均值算法和APFC算法检测性能.试验结果表明, APFC均值算法能够避免模糊c均值算法固有的缺点,检测率提高和误报率下降,并且有较高的检测性能.

入侵检测、自适应粒子群优化算法、模糊聚类、模糊c-均值算法

9

TP393.08(计算技术、计算机技术)

2010-01-18(万方平台首次上网日期,不代表论文的发表时间)

共5页

6884-6887,6899

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

9

2009,9(22)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn