期刊专题

10.3969/j.issn.1671-1815.2009.17.025

FCM聚类算法与改进层次聚类算法的结合

引用
模糊c-均值聚类算法(fuzzy C-means 简称FCM)和层次聚类算法是两种非常重要的聚类算法.由于FCM算法对初始聚类中心敏感,并且需要人为确定聚类类别数,这样收敛结果易陷入局部最优解.通过对这两种聚类算法的分析,首先对传统的凝聚层次聚类算法提出了改进,然后用改进的凝聚层次聚类算法得到最佳聚类数和初始聚类中心,最后用FCM算法进行再次聚类,以此得到更好的聚类结果并且减少了执行时间和迭代次数.

凝聚层次聚类、模糊c均值聚类、初始聚类中心、全链接

9

TP311.13(计算技术、计算机技术)

2009-10-27(万方平台首次上网日期,不代表论文的发表时间)

共4页

5008-5011

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

9

2009,9(17)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn