期刊专题

10.3969/j.issn.1671-1815.2009.17.023

神经网络泛化增强技术研究

引用
综述和比较现有改善神经网络泛化能力的方法,特别对其中的5种实用方法进行详细的理论分析,指出各自的优缺点.实验中将各种方法用于函数逼近与数据分类两大领域,通过泛化能力与运行时间的对比,给出其性能排序.发现贝叶斯自适应正则化方法性能最好,其次是正则化法、逐步增加法、剪枝法;早期停止法速度最快,但是用于函数逼近效果不佳,只能用于数据分类.

神经网络、泛化改进、贝叶斯自适应正则化

9

TP301.6(计算技术、计算机技术)

2009-10-27(万方平台首次上网日期,不代表论文的发表时间)

共6页

4997-5002

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

9

2009,9(17)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn