期刊专题

10.3969/j.issn.1671-1815.2009.15.013

基于改进粒子群算法的电力系统负荷预测

引用
为了提高电力系统负荷预测的精度,并考虑到电力系统负荷的混沌特性,提出了将蜜蜂进化型粒子群算法和混沌神经网络相结合的负荷预测方法.构建了混沌神经网络模型,提出了蜜蜂进化型PSO算法(Bee Evolution Modifying Particle Swarm Optimization, BEMPSO);以此来训练混沌神经网络参数,并且分别对基本粒子群优化算法和BEMPSO优化算法的模型进行仿真预测.结果表明提出的BEMPSO混沌神经网络负荷预测方法具有较强的泛化能力和较高的精度.

电力系统、负荷预测、蜜蜂进化、粒子群算法、混沌神经网络

9

TM715(输配电工程、电力网及电力系统)

黑龙江自然科学基金项目F200504

2009-10-27(万方平台首次上网日期,不代表论文的发表时间)

共5页

4331-4335

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

9

2009,9(15)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn