期刊专题

10.3969/j.issn.1671-1815.2008.16.045

基于PSO和分组训练的SVM参数快速优化方法

引用
针对在利用粒群优化算法(PSO)对支持向量机(SVM)参数进行优化时,由于SVM训练运算量较大,导致需多次迭代过程的参数优化速度缓慢的问题.引入分组训练方法,将训练样本分成若干样本子集分别进行训练,然后对经分组训练得到的各个SVM的参数进行优化.在提高了训练速度的同时,大幅提高了参数优化速度,并对分类SVM的参数优化进行了仿真实验,取得了良好的优化效果.

支持向量机、粒群算法、参数优化、训练样本

8

O229;TP391.41(运筹学)

2008-11-05(万方平台首次上网日期,不代表论文的发表时间)

共4页

4613-4616

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

8

2008,8(16)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn