期刊专题

10.3969/j.issn.1671-1815.2006.02.004

自校正加权观测融合Kalman估值器

引用
对于带未知噪声统计的多传感器系统,应用现代时间序列分析方法,基于滑动平均(MA)新息模型参数的两段递推最小二乘法在线辨识,可在线估计未知噪声方差,进而提出了一种加权观测融合自校正Kalman估值器,可统一处理自校正滤波、预报和平滑问题,并证明了它的收敛性,即若MA新息模型参数估计是一致的,则它与相应的最优加权观测融合Kalman估值器的误差收敛到零,因而具有渐近全局最优性.一个带3传感器跟踪系统的仿真例子说明了其有效性.

多传感器、加权观测融合、Kalman估值器、辨识、自校正、噪声方差估计、现代时间序列分析方法

6

O211.64(概率论与数理统计)

中国科学院资助项目60374026;黑龙江省重点实验室基金

2006-03-23(万方平台首次上网日期,不代表论文的发表时间)

共5页

116-120

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

6

2006,6(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn