期刊专题

10.3969/j.issn.1671-1815.2005.01.003

带位置和速度观测的信息融合Kalman跟踪滤波器

引用
应用基于ARMA模型的现代时间序列分析方法,和应用基于Riccati方程的经典Kalman滤波方法,对带位置和速度观测的两传感器系统,在线性最小方差信息融合准则下,分别提出了按矩阵加权、对角阵加权和标量加权的三种信息融合Kalman跟踪滤波器,其中,按标量加权可明显减少计算负担,便于实时应用.一个仿真例子说明了两种方法引出相同的结果,但构造ARMA新息模型时必须进行左素分解,且说明了三种加权融合滤波器的精度无显著差异.

现代时间序列分析方法、Kalman滤波方法、跟踪系统、信息融合Kalman跟踪滤波器

5

O211.64(概率论与数理统计)

国家自然科学基金60374026

2005-03-17(万方平台首次上网日期,不代表论文的发表时间)

共5页

14-18

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

5

2005,5(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn