10.3969/j.issn.1674-5639.2011.04.008
对哥德尔定理的辩证逻辑形式化解读
逻辑矛盾仅是“量词-质词-真值词”皆矛盾的非等值关系命题,辩证矛盾仅是“主词-谓词-命题词”皆矛盾的等值关系命题。在以事实验证了一元与二元真值函数的断定一致性和能指完全性基础上,说明哥德尔定理对包含扩充自然数后的代数理论并不适用。为了实现形式系统可兼容的一致性和完全性,必须引进所指有辩证矛盾和断言无逻辑矛盾之“指断合一”的哲学对象论。由此用基于负号而推广的辩证否定算子,才能彻底根治一阶逻辑形式系统的不完全性。
逻辑否定、辩证否定、哥德尔定理、一致性、完全性
33
B811.0(逻辑学(论理学))
2012-04-21(万方平台首次上网日期,不代表论文的发表时间)
共9页
23-31