期刊专题

10.3969/j.issn.1674-098X.2014.12.065

基于支持向量机的城市小区燃气管网日负荷预测模型

引用
该文使用支持向量机中的两种核函数,采用grid-search算法、遗传算法、粒子群算法优化参数,建立对吉林市某小区燃气管网日负荷预测的支持向量机模型。将日最高温度、日最低温度、日平均温度、小区人员最高年龄、小区人员最低年龄、小区人员平均年龄作为燃气管网日负荷变化密切相关的主要影响因素,分别作为支持向量机的输入量,将小区人员临时出差、小区临时增加暂住人口等随机因素作为燃气管网日负荷变化密切相关的次要影响因素,将随机因素统一归为支持向量机的一个输入量。采用[0,1]归一化方法,对作为影响因素的输入量数据与日负荷预测输出量数据进行归一化处理。对节假日和工作日的燃气管网日负荷预测采用独立处理方法,避免了相互之间的干扰影响。试验结果表明,采用径向基核函数的支持向量机预测模型对燃气管网日负荷预测拟合程度达到90%以上。

燃气管网、支持向量机、日负荷预测

TP391.4(计算技术、计算机技术)

2014-07-05(万方平台首次上网日期,不代表论文的发表时间)

共4页

99-102

暂无封面信息
查看本期封面目录

科技创新导报

1674-098X

11-5640/N

2014,(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn