期刊专题

10.3969/j.issn.1674-098X.2014.08.060

滚动轴承故障程度识别

引用
针对实际运行滚动轴承的故障程度问题,提出一种诊断滚动轴承故障程度的方法.深入研究滚动轴承的故障机理、振动信号的时域特征以及不同程度故障对滚动轴承运行的影响进行了,广泛分析振动特征提取方法和支持向量机的算法,采用了小波包能量法提取状态特征,使用新型二叉树支持向量机的多类分类算法.实验结果表明采用小波包提取状态特征和支持向量机可以滚动轴承故障程度识别,模型的学习、泛化能力强.

滚动轴承、故障程度、小波包能量法、支持向量机

11

TH133.33

2014-05-27(万方平台首次上网日期,不代表论文的发表时间)

共3页

77-79

暂无封面信息
查看本期封面目录

科技创新导报

1674-098X

11-5640/N

11

2014,11(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn