期刊专题

10.13774/j.cnki.kjtb.2018.11.042

一种数据挖掘算法在课程中的研究

引用
针对关联规则挖掘算法中存在事务之间的某种关联性的数据无法区分的问题,本文将蚁群算法和加权概念引入到挖掘算法中,首先分析了目前加权关联规则挖掘算法的不足,提出了将蚁群算法引入到加权关联规则中,并对蚁群算法中的应度函数,状态转移规则和信息素更新的改进,并采用矩形向量作为事务存储结构进行连接和剪枝.仿真实验中与基本Apriori算法进行比较,并通过将本校的课程资源作为挖掘对象,结果说明本文算法具有良好的挖掘效果.

关联规则、数据挖掘、蚁群算法

34

TP301.6(计算技术、计算机技术)

吉林省高等教育教学改革研究课题

2019-03-19(万方平台首次上网日期,不代表论文的发表时间)

共7页

221-226,250

暂无封面信息
查看本期封面目录

科技通报

1001-7119

33-1079/N

34

2018,34(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn