期刊专题

10.3969/j.issn.1001-7119.2016.10.003

基于二项--泊松的高斯随机聚类数学建模稳定性验证

引用
大数据的聚类过程是高斯随机过程,因此在大数据分类中,构建稳健的数据分类模型,提高数理统计能力至关重要。二项-泊松模型具有全局解的凸优化随机聚类性能,利用二项-泊松模型对高斯随机性数据处理的优势,在有限维空间中,进行数据聚类分析。构建二项-泊松模型的KKT条件,取得二项-泊松模型的边值周期解多项式核,进行高斯聚类特征分解,得出Schur complement泛函准则,建立二项-泊松模型的数理统计大数据分类系统,最终验证了稳定性。推导结果表明,利用二项-泊松模型在高斯随机大数据分类过程中是稳定收敛的,有效提高了大数据的数理统计和分析能力。

二项-泊松模型、高斯过程、数据分类、数理统计

32

O177(数学分析)

2016-11-17(万方平台首次上网日期,不代表论文的发表时间)

共5页

9-12,30

暂无封面信息
查看本期封面目录

科技通报

1001-7119

33-1079/N

32

2016,32(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn