期刊专题

10.3969/j.issn.1001-3946.2021.04.005

引入SPP的高分辨率遥感影像深度学习分类方法

引用
当前,深度学习技术与传统的面向对象技术相结合的分类方法已经较好地应用于高分辨率遥感影像的分类任务当中,但是仍存在如下问题:高分辨遥感影像地物目标复杂,依靠单一数据源进行分割效果不佳;标准的卷积神经网络只能接受固定尺寸大小的输入,分割对象在拉伸变形至固定尺寸的过程中会造成信息的损失.该文首先结合DSM数据进行协同分割,获得更佳的分割结果;然后将空间金字塔池化层(Spatial Pyramid Pooling,SPP)引入卷积神经网络中,构建了一种能接受任意尺寸输入的深度学习面向对象分类模型,从而令分割对象的特征表达更完整,以提高影像分类精度.实验结果表明:引入空间金字塔池化层的高分辨率遥感影像深度学习分类方法,可有效提高影像分类精度,进而得到更加真实可靠的分类结果.

影像分类;深度学习;面向对象;数字表面模型;SPP

TP391.41;TP751;P237

四川省科技厅重点研发项目;四川电力设计咨询有限责任公司科技项目

2022-01-13(万方平台首次上网日期,不代表论文的发表时间)

共5页

20-24

暂无封面信息
查看本期封面目录

勘察科学技术

1001-3946

13-1100/TF

2021,(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn