期刊专题

10.13264/j.cnki.ysjskx.2022.06.012

基于改进BiSeNetV2的裂缝检测与识别

引用
裂缝作为固体材料中较为常见的某种不连续现象,是固体结构破坏的开始,及时对裂缝进行识别和检测,并对检测结果进行分析,采取相对应的措施,能够较好地防止事故发生,保障工程作业中的安全.目前裂缝识别主要依靠人工检测,存在劳动强度大、耗时长、精确度不高、危险、耗费高等问题,为此基于数字图像处理技术的裂缝智能识别被广泛研究,然而裂缝表面纹理不规则、噪声的复杂信息,影响了识别精度.为了解决常见固体材料的裂缝智能识别问题,提出了以轻量级语义分割网络模型BiSeNetV2来进行裂缝自动检测,同时自主构建裂缝数据集.实验表明,改进后的裂缝识别模型识别精度提升了7.6%.基于BiSeNetV2的裂缝识别模型,能对裂缝进行精准检测和识别,解决人工识别存在的各类问题.

BiSeNetV2、语义分割、裂缝检测与识别、岩石裂缝

13

TG14;TP274.4(金属学与热处理)

江西省教育厅科学技术研究项目;赣州市科技计划项目

2023-02-06(万方平台首次上网日期,不代表论文的发表时间)

共7页

91-97

相关文献
评论
暂无封面信息
查看本期封面目录

有色金属科学与工程

1674-9669

36-1131/TF

13

2022,13(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn