期刊专题

10.13264/j.cnki.ysjskx.2022.01.015

GA-BP神经网络模型在稀土矿边坡位移监测中的应用

引用
离子型稀土原地浸矿工艺改变土体力学特性,导致山体滑坡风险提高.针对现有研究在预测稀土矿边坡位移时存在精度不高和误差较大等问题,利用遗传算法对BP神经网络初始权值和阈值进行优化,构建一种新的稀土矿边坡位移预测模型.以江西龙南某离子型稀土矿为研究对象,在矿山布置了位移计实时监测稀土矿开采全过程的位移变化.首先利用125组位移监测数据训练BP神经网络构建预测模型,5组数据进行模型验证;再通过GA-BP神经网络优化预测模型,将2种预测模型的预测值和实测值进行对比及误差分析.研究表明:GA-BP神经网络模型的平均相对误差、平均绝对误差、均方误差、平均绝对百分比误差均减小到优化前的1/3以下,可作为稀土矿边坡位移监测分析的一种辅助手段.

原地浸矿;边坡位移;遗传算法;BP神经网络;实时监测

13

TD325.4;TU753(矿山压力与支护)

国家自然科学基金51964014

2022-03-14(万方平台首次上网日期,不代表论文的发表时间)

共7页

115-121

暂无封面信息
查看本期封面目录

有色金属科学与工程

1674-9669

36-1131/TF

13

2022,13(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn