基于多指标模糊融合的滚动轴承诊断的最优频带解调方法
轴承运行时会产生较大的振动噪声,采用振动信号统计量指标可以识别其共振频带,并通过共振频带解调来提取故障特征信号。目前常用的峭度图等方法根据经验自顶向下粗略划分轴承振动频谱,而且采用单一指标识别共振频带,常常被噪声所干扰,因而鲁棒性不高。为了提高滚动轴承故障诊断的精度,提出一种多指标模糊融合的最优频带解调方法。采用自底向上的思路,以最小化代价函数为条件,通过细分振动频谱,将细分的频谱进行双向合并,可以提高频带划分的精度。在提出的方法中,代价函数由峭度、平滑因子、峰度系数等多个指标应用模糊贴近度方法进行数据融合构造,可以有效提高识别最优共振频带的鲁棒性。分别采用仿真信号和实际采集信号对所提出的方法进行测试,与现有的单指标方法相比,试验结果表明所提出的方法可以正确诊断滚动轴承的故障。
模糊数据融合、故障诊断、滚动轴承
TH133
国家自然科学基金51375517;重庆市杰出青年科学基金2012JJJQ70001;重庆高校创新团队KJTD201313资助项目。
2015-04-29(万方平台首次上网日期,不代表论文的发表时间)
共8页
107-114