经验模态分解和Laplace小波在机车柴油机齿轮系故障诊断中的应用
针对机车柴油机配气齿轮系故障信号呈现时变非平稳特征且信噪比低的特点,提出基于经验模态分解和Laplace小波的机车柴油机声信号分析方法,并成功用于工业现场.简要介绍信号经验模态分解的基本原理与算法,以机车柴油机实际声信号为例,分析其抑制噪声干扰的能力.经验模态分解相当于自适应滤波器组,可将信号分解成不同频带的固有模态函数(Intrinsic mode functions,IMF).试验表明对表征齿轮故障的IMF分量进行功率谱分析,能有效检测齿轮故障.根据滚动轴承故障信号表现为单边冲击衰减震荡,故障特征频率包含的能量少且容易受噪声干扰的特点,提出采用基于Lanlace小波的相关滤波实现冲击特征波形准确识别,提取故障特征频率的轴承诊断方法.机车柴油机运行测试试验证明,上述方法能准确诊断各种类型的配气齿轮传动装置故障.
齿轮、滚动轴承、故障诊断、经验模态分解、Laplace小波
47
TK428;TH17(内燃机)
2011-07-21(万方平台首次上网日期,不代表论文的发表时间)
共7页
109-115