期刊专题

10.16097/j.cnki.1009-6744.2023.04.009

混合示教长短时记忆网络的车辆轨迹预测研究

引用
为实现智能网联车对周围车辆运行轨迹准确地长时预测,本文提出一种混合示教解码的长短时记忆网络的车辆轨迹预测方法.首先,通过特征筛选和历史轨迹序列标注建立轨迹预测数据集;其次,构建长短时记忆网络的编码器-解码器模型,编码器将自车和周围车辆历史轨迹及道路环境信息编码为上下文向量,解码器采用混合示教的模式将上下文向量解码动态解码为未来轨迹;最后,采用真实道路数据集NGSIM US101和I-80路段验证模型的可行性.多组对比分析实验结果表明:本文所提方法在长时域预测的终点位移误差指标上的有效性和优越性,5 s的终点位移误差在2.7 m以内;并且模型在稀疏采样后的数据集上达到更高的预测准确率,5 s的位移误差在1.3 m以内.

智能交通、混合示教、长短时记忆网络、人工驾驶车辆、智能网联车、车辆轨迹预测

23

U495(交通工程与公路运输技术管理)

2023-08-30(万方平台首次上网日期,不代表论文的发表时间)

共8页

80-87

暂无封面信息
查看本期封面目录

交通运输系统工程与信息

1009-6744

11-4520/U

23

2023,23(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn