期刊专题

10.16097/j.cnki.1009-6744.2021.02.006

基于自动车牌识别数据的混合交通流饱和流率实时估计

引用
为解决混合交通流饱和流率测算的实时性和时变性问题,实时获得混合交通流的饱和流率用以信号配时,本文提出基于自动车牌识别数据(Automatic License Plate Recognition,ALPR)的混合交通流饱和流率实时自动估计方法.首先,分信号周期提取车头时距数据,在当前车和后车车辆类型确定时车头时距满足同一正态分布的假设基础上,构建车头时距的高斯混合模型并应用EM(Expectation Maximization)算法求解;其次,基于赤池信息准则(Akaike Information Criterion,AIC)选取高斯混合模型的最优个数,拟合数据得到高斯混合模型参数;最后,根据车头时距的高斯混合模型推算出混合交通流饱和流率.以杭州城市道路3条路段的ALPR数据为例,分析基于ALPR数据获取车头时距的采样误差,对模型进行验证,并与传统的HCM(Highway Capacity Manual)方法进行对比.结果表明:基于ALPR数据的车头时距采样误差满足精度要求;与HCM的实测法相比,模型所得的混合饱和交通流率相对误差小,结果准确;该方法与传统的标准车流饱和流率折算法效果相近,并考虑混合交通流时变特性,能自动部署实时计算,鲁棒性良好,有实际应用意义.

智能交通、饱和流率、高斯混合模型、车牌识别数据、交通控制

21

U491(交通工程与公路运输技术管理)

国家自然科学基金/National Natural Science Foundation of China61773338,71901193,52072340

2021-05-07(万方平台首次上网日期,不代表论文的发表时间)

共7页

37-43

相关文献
评论
暂无封面信息
查看本期封面目录

交通运输系统工程与信息

1009-6744

11-4520/U

21

2021,21(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn