10.3963/j.jssn.1674-4861.2022.03.018
基于VMD-MD-Clustering方法的航班延误等级分类
针对航班数量逐年增加导致的航班延误日益频繁问题,研究对航班延误等级分类的方法,从而为制定针对性措施,降低航班延误造成的损失提供理论基础.从时间、空间和效率3个方面确定航班延误时间、航班飞行时间、延误影响人数和航程这4个数值属性指标,以及过站是否经停、飞机载客量2个类属性指标,共计6个评估指标构建航班延误等级分类模型.提出了1种基于变分模态分解(VMD)、马氏深度(MD)函数和K-means数据聚类(Clustering)的航班延误等级分类方法(以下简称V-M-C方法).V-M-C方法将非正态、非平稳的多维航班延误数据视作含噪声的信号序列进行处理,通过VMD降噪获得正态、稳定的多维信号数据;利用MD函数进行降维处理得到一维的稳定信号数据;使用K-means方法对得到的一维数据进行聚类,对航班延误等级分类.为确定航班延误等级分类精确性,采用带惩罚权重的支持向量机(SVM)对分类结果进行分析,可以在一定程度上提高V-M-C方法的普适性.以某大型枢纽机场某月的航班运行数据为例,只使用K-means算法的航班延误等级分类精度为81.9%,而V-M-C方法对航班延误等级分类精度可提升至95.41%.实验结果表明,V-M-C方法的分类准确率更高,能够帮助机场根据相应延误等级制定预案,保障航班整体运行正点率.
航空运输、航班延误、变分模态分解、数据深度、聚类算法、支持向量机
40
V352(航空港(站)、机场及其技术管理)
国家重点研发计划;天津市教育委员会自然科学重点基金项目
2022-07-25(万方平台首次上网日期,不代表论文的发表时间)
共8页
171-178