10.3963/j.issn.1674-4861.2017.02.004
水上交通流冲突严重度BP神经网络评价方法
目前的水上交通流评价方法在评价指标关系模糊、来源不清等情况下难以运用,且主观性较强,存在评价结果严重偏离实际的情况,忽视了客观性不足的问题.为降低专家主观性对水上交通流冲突严重度评价的影响,基于BP神经网络建立评价模型,并通过网络训练进行函数比较,确定最符合模型设定要求的Trainlm函数,以及精度与迭代次数.由于数据的差异性会对BP神经网络的训练效率和评价精度造成影响,基于聚类分析与BP神经网络建立新的评价模型,将训练数据按照欧几里得度量进行归类开展神经网络训练,分别对水上交通流冲突严重度进行评价.运用9个水道数据为例对模型进行验证,通过比较聚类分析数据与未处理的原始数据在BP神经网络中的评价结果,发现评价结果平均误差从42.05%降低到23.74%,进一步验证了BP神经网络在该领域的可行性.评价模型利用聚类分析与BP神经网络相结合的方法,不仅客观性较强,而且与单一使用BP神经网络的模型相比提升了评价精度.
水路运输、交通流冲突、严重度评价、BP神经网络、聚类分析
35
U694(水路运输技术管理)
国家自然科学基金项目51179147
2017-06-02(万方平台首次上网日期,不代表论文的发表时间)
共7页
23-29