期刊专题

10.3963/j.issn 1674-4861.2015.06.010

交通事件持续时间预测的贝叶斯网络模型?

引用
交通事件是引发道路交通拥堵的主要因素之一,通过实时交通诱导等手段可以降低其对交通运行造成的影响,而及时准确地预测事件持续时间则是实现有效管控的前提条件.基于 MIT 打分函数,融合自上而下的网络生长规则,引入蚁群算法寻找最优网络结构,即以 S-ACOB 算法为核心搭建最优贝叶斯网络模型.增加了节点随机选择机制及局部结构概率选择模式,降低局部最优结果生成概率,确保贝叶斯网络的健壮性.通过实例验证及对比分析,针对观测节点属性完备和缺失的情况,网络模型预测精度分别为76.97%和93.23%,平均预测精度可达87.82%,证明该模型可以有效地预测交通事件持续时间.

交通工程、交通事件、持续时间预测、贝叶斯网络、结构学习、MIT 算法、S-ACOB 算法

U491.31(交通工程与公路运输技术管理)

国家自然科学基金项目71210001

2016-03-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

65-71

暂无封面信息
查看本期封面目录

交通信息与安全

1674-4861

42-1781/U

2015,(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn