期刊专题

10.3969/j.issn.1008-5696.2015.02.016

RB F 神经网络在公交行程时间预测中的应用

引用
为提高公交行程时间预测结果准确度、减少预测过程花费时间,提出基于RB F神经网络公交行程时间预测模型。综合分析公交车辆行程时间动静态影响因素后,将网络变量输入模型对行程时间进行预测,以重庆市462公交线路为例,对模型进行验证,对比BP网络预测结果,表明RBF模型在速度和精确度上优于BP网络,具有一定实际应用价值。

公共交通、行程时间、预测、RB F神经网络

U495(交通工程与公路运输技术管理)

重庆市教委科学技术研究项目K J130423

2015-05-04(万方平台首次上网日期,不代表论文的发表时间)

共5页

69-73

相关文献
评论
暂无封面信息
查看本期封面目录

交通科技与经济

1008-5696

23-1443/U

2015,(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn