期刊专题

10.11900/0412.1961.2021.00283

基于机器学习的中厚板变形抗力模型建模与应用

引用
为提高变形抗力预测精度,以兴澄特钢中厚板轧机实际生产数据为基础,针对性提出2种利用机器学习对变形抗力进行预测的方法:一种是极限学习机(ELM)与传统数学模型结合的多钢种变形抗力模型及建模方法,另一种是基于TensorFlow深度学习框架的变形抗力模型及建模方法.方法一参考周纪华-管克智变形抗力模型,改进原变形抗力模型结构形式,计算出低合金钢、合金钢及高合金钢代表钢种的基准变形抗力;通过非线性回归计算出与钢种无关的变形参数影响系数,引进ELM神经网络算法,采用灰色关联分析及交叉验证优选神经网络参数,通过线性插值对预测结果进行平滑处理,减小ELM预测残差,最后与传统数学模型相结合得到变形抗力.方法二基于深度学习技术,结合机理,构建2种不同结构的深度神经网络,采用小批量(mini-batch)和均方根传播(RMSprop)优化算法寻优,结合批标准化(BN)和早停(early stopping)正则化策略提高模型泛化能力与稳定性,最后综合工艺特性,分别对粗轧机(RM)、精轧机(FM)建立变形抗力预测模型,提高模型精度.研究结果表明,利用深度学习预测变形抗力具有较高的预测精度,经离线分析,平均绝对百分误差(MAPE)由原模型的9.27%降至平均2.59%;在线应用后,轧制力预测精度相对误差10%以内比例由72.31%提高到平均90.24%,提高了现场生产的工艺水平.

机器学习、变形抗力预测、ELM神经网络、深度学习、基准变形抗力、灰色关联分析

59

TG335.5(金属压力加工)

2023-03-31(万方平台首次上网日期,不代表论文的发表时间)

共12页

435-446

暂无封面信息
查看本期封面目录

金属学报

0412-1961

21-1139/TG

59

2023,59(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn