期刊专题

10.3321/j.issn:0412-1961.2001.08.003

集团变分法中自然迭代解法收敛性的一般性证明

引用
以bcc合金为例,选择四面体顶点作为集团变分法的基本原子团,将通过迭代方程联系起来的两组变量区分为"输入"和"输出"变量组,得到前后两步巨势函数差△Φ=Φ-Φ的表达式首先将函数△Φ视为相互独立的"输出"变量的函数,而将"输入"变量以及其它参数均看成是常量,然后采用极值定理和极值的充分条件,证明了函数△Φ的非负性;加上归一性条件的限制之后,通过引入"中间"变量,也证明了函数△Φ的非负性,即证明了迭代过程中的巨势函数的值总是单调减小的.最终依据热力学中稳定结构对应巨势函数极小值的结论证明了自然迭代法的收敛性.对于集团变分法中各种近似计算的自然迭代过程的收敛性问题,这种证明方法不同于Kikuchi提出的直接比较的方法,具有一般性.

集团变分法、自然迭代法、巨势、收敛性

37

O176(数学分析)

2004-08-06(万方平台首次上网日期,不代表论文的发表时间)

共6页

795-800

暂无封面信息
查看本期封面目录

金属学报

0412-1961

21-1139/TG

37

2001,37(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn