复合材料周期结构数学均匀化方法的一种新型单胞边界条件
数学均匀化方法是计算周期复合材料结构的有效方法之一,单胞边界条件施加的合理性直接决定了影响函数控制方程的计算效率和精度,进而影响均匀化弹性参数和摄动位移的计算精度.本文首先将单胞影响函数作为虚拟位移处理,给出了单胞在结构中真实的边界条件,结果表明,四边固支适合作为二维结构单胞边界条件;其次,针对二维结构提出了超单胞周期边界条件,有效提高了影响函数的计算精度,并使用与虚拟位移相对应的虚拟势能泛函验证超单胞周期边界条件的有效性;最后,利用数值分析验证多尺度渐进展开方法的计算精度,强调了二阶摄动的必要性.
周期复合材料、多尺度、单胞边界条件、超单胞、势能泛函
38
O302
2021-08-03(万方平台首次上网日期,不代表论文的发表时间)
共10页
401-410