基于剪切变形的矩形梁剪力滞求解方法
Timoshenko梁通过假设截面的剪切刚度和附加平均剪切转角变形的方式来近似修正初等梁中未考虑剪切变形能的问题,这与梁剪应力沿梁高变化的实际不符。本文基于材料力学剪应力计算式和相应的剪切变形理论,从剪切变形与梁的位移关系入手,导出矩形梁考虑剪切变形时的纵向位移沿梁高方向的函数关系式,证明该位移可分解为纯弯曲引起的位移和剪力引起的剪力滞翘曲位移之和。应用剪力滞广义坐标与广义力的概念,基于能量变分原理得到等截面梁剪力滞控制微分方程组及其通解形式。对均布荷载作用下矩形简支梁的算例分析表明,本文算法与弹性力学精确解对比,两者的应力和挠度剪力滞系数求解结果非常接近,本文算法有足够的精度,且比弹性力学简单。
剪切变形、剪力滞翘曲位移、能量变分、矩形梁、剪力滞系数
O312(理论力学(一般力学))
国家自然科学基金51178183;湖南省教育厅重点13A027
2015-09-23(万方平台首次上网日期,不代表论文的发表时间)
共5页
518-522