基于神经网络的间隙机构运动副磨损预测
应用BP神经网络建立了磨损率与接触应力、滑动速度和材料硬度之间的非线性关系模型,并对该网络模型进行了验证和测试,结果表明,训练良好的神经网络模型能够准确反映样本所蕴含的内在磨损规律,且具有较好的预测效果。基于非线性弹簧阻尼模型和修正的Coulomb摩擦力模型对含间隙曲柄滑块机构进行数值仿真分析,获得间隙机构运动副的接触应力和相对滑动速度,利用训练好的神经网络磨损模型对轴套的磨损进行迭代磨损预测分析,发现随着曲柄转数的增加,轴套表面一些特定位置处的磨损越来越严重,最终导致轴套表面出现非均匀磨损现象,其原因是间隙机构运转过程在一些特定位置处产生了较大接触应力和碰撞力。
BP神经网络、间隙、接触应力、磨损预测、轴套
TH113;O313.5
国家自然科学基金51275404;陕西高校省级重点实验室科研2010JS080
2015-09-23(万方平台首次上网日期,不代表论文的发表时间)
共7页
479-484,529