大变形问题分析的局部Petrov-Galerkin法
在微机电系统(MEMS)的建模和模拟研究中,大变形或大移动要充分予以考虑.用有限元法分析这类问题,由于难以避免的网格畸变,使模拟效率精度降低甚至失效,无网格方法(Meshless Method)则能在分析这类问题时显示出明显的优势,无网格局部Petrov-Galerkin(MLPG)法被誉为是一种有发展前景的真正无网格法.本文进一步发展了MLPG法,通过对任意的离散分布节点采用局部径向基函数构造插值形函数和Heaviside权函数,分析方程采用局部加权弱形式离散,建立了变量仅依赖于初始构型的完全Lagrange分析格式,最后用Newton-Raphson法迭代求解.文中分析了悬臂梁典型算例和微机电开关非线性大变形问题,通过与有限元结果的比较,表明本文提出的大变形问题无网格局部Petrov-Galerkin法具有稳定性好及收敛性快等优点.
大变形、几何非线性、微机电系统、无网格法、局部Petrov-Galerkin法
26
O343.2(固体力学)
国家自然科学基金10672055
2016-11-29(万方平台首次上网日期,不代表论文的发表时间)
共5页
353-357