期刊专题

10.3969/j.issn.1671-7775.2021.06.002

一种多尺度YOLOv3的道路场景目标检测算法

引用
针对在自然交通场景中道路不同种类目标的边界框大小差异巨大,现有实时算法YOLOv3无法很好地平衡大、小目标的检测精度等问题,重新设计了YOLOv3目标检测算法的特征融合模块,进行多尺度特征拼接,对检测模块进行改进设计,新增2个面向小目标的特征输出模块,得到一种新的具有5个检测尺度的道路目标多尺度检测方法YOLOv3_5d.结果表明:改进后的YOLOv3_5 d算法在通用自动驾驶数据集BDD100 K上的检测平均精度为0.5809,相较于原始YOLOv3的检测平均精度提高了0.0820,检测速度为45.4帧·s-1,满足实时性要求.

道路多目标检测;卷积神经网络;深度学习;YOLOv3;多尺度检测

42

TP273(自动化技术及设备)

江苏省重点研发计划项目;镇江市重点研发计划项目

2021-12-28(万方平台首次上网日期,不代表论文的发表时间)

共7页

628-633,641

暂无封面信息
查看本期封面目录

江苏大学学报(自然科学版)

1671-7775

32-1668/N

42

2021,42(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn