期刊专题

10.3969/j.issn.1671-7775.2017.04.016

利用B-TBU模型评估桥梁状态的神经网络法

引用
鉴于目前常用的桥梁状态评估方法存在较大的人为主观性和随意性,且无法考虑历史评估数据对当前状态的影响,因此不能准确地反映出桥梁当前的真实状态,依据贝叶斯推断中考虑先验信息影响的特点,提出了一种B-TBU模型的方法,在对当前状态的评估中,考虑历史评估数据的影响,对某座桥梁近20年的状态进行重新评估.评估结果表明:采用B-TBU模型方法可大幅度提高状态评估的准确性,使桥梁各年份状态评估的准确度均提高到90%以上;同时将BP神经网络、ELM神经网络等算法初步引入B-TBU模型,对该B-TBU模型方法进行训练学习.其结果表明,采用神经网络类方法,各年份状态评估的准确度也保持在80%左右.

桥梁状态、贝叶斯推断、B-TBU模型、神经网络、状态评估

38

O212.8;U446(概率论与数理统计)

陕西省交通运输厅交通科研项目13-25K;云南省交通厅科技计划项目云交科2013A02

2017-10-11(万方平台首次上网日期,不代表论文的发表时间)

共6页

466-471

暂无封面信息
查看本期封面目录

江苏大学学报(自然科学版)

1671-7775

32-1668/N

38

2017,38(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn