期刊专题

10.3969/j.issn.1671-7775.2014.02.001

基于GA-BP的安全带佩戴识别方法

引用
为了避免不规范佩戴安全带行为的发生,进一步提高安全带的佩戴率,提出了一种基于GA-BP的安全带佩戴识别方法.该方法在图像处理技术的基础上,提取安全带极坐标转化后的二值化图像像素值作为表征安全带佩戴状态的特征向量,并通过PCA方法对其进行降维;然后采用BP神经网络算法,建立基于BP神经网络的安全带佩戴识别模型,同时为了提高安全带佩戴识别模型的精度,引入遗传算法对其权值和阈值进行优化,建立基于GA-BP的安全带佩戴识别模型;最后通过具体实例验证.结果表明:该方法合理有效,能较好地对安全带的不同佩戴状态进行识别,具有较好的实用性和推广性.

安全带佩戴、状态识别、特征向量、PCA降维、BP神经网络、遗传算法

35

U461.91(汽车工程)

江苏省普通高校研究生科研创新计划项目CXLX12_0628

2016-09-18(万方平台首次上网日期,不代表论文的发表时间)

共7页

125-131

相关文献
评论
暂无封面信息
查看本期封面目录

江苏大学学报(自然科学版)

1671-7775

32-1668/N

35

2014,35(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn