期刊专题

10.3969/j.issn.1006-2475.2023.07.001

基于CWGAN-GP与CNN的轴承故障诊断方法

引用
针对在实际工作过程中轴承故障样本数偏少且不均衡的问题,提出一种基于条件Wasserstein生成对抗网络(CWGAN-GP)和卷积神经网络(CNN)的轴承故障诊断方法.首先,通过结合条件生成对抗网络(CGAN)和基于梯度惩罚Wasserstein距离的生成对抗网络(WGAN-GP),构建CWGAN-GP生成对抗网络;然后,将少量轴承故障的数据样本输入CWGAN-GP中,以得到与原始样本相似的高质量样本,待网络达到纳什均衡时将生成样本和原始样本混合,产生新的样本集;最后,将新样本集输入卷积神经网络学习样本特征进行故障诊断.实验结果表明,本文提出的诊断方法准确度超过99%,高于其他诊断方法,有效提高了诊断精度,增强了其泛化能力.

故障诊断、深度学习、轴承、生成对抗网络、卷积神经网络

TP202(自动化技术及设备)

国家自然科学基金51705531

2023-08-25(万方平台首次上网日期,不代表论文的发表时间)

共6页

1-6

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2023,(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn