期刊专题

10.3969/j.issn.1006-2475.2023.05.003

基于小样本学习的藏文命名实体识别

引用
藏文命名实体识别是藏文自然语言处理领域的一项关键技术,其目的是识别文本中的人名、地名及组织机构名.在目前的研究中,深度学习方法需要大量的标注数据是制约模型性能的主要因素,因此本文提出基于小样本学习的藏文命名实体识别方法.针对小样本数据量少导致模型无法充分学习实体特征的问题,本文提出实体特征信息融合方法,在训练过程中将实体位置信息、分词信息与藏文音节信息以维度拼接的方式进行特征融合,通过辅助信息增强实体特征,使得模型可以较好地学习藏文长实体的边界信息,并设计消融实验探究不同特征信息对模型效果的影响.实验结果表明,本文提出的方法有效提高了藏文小样本命名实体识别模型的准确率,相较于基线实验F1值总体提升了22.22~38个百分点.

小样本学习、藏文、命名实体识别、实体特征信息融合

TP391(计算技术、计算机技术)

国家重点研发计划;西藏自治区科技创新基地自主研究项目;西藏大学研究生高水平人才培养计划项目

2023-06-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

13-19

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2023,(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn