期刊专题

10.3969/j.issn.1006-2475.2023.05.002

基于通道注意力和Transformer的图像标题生成方法

引用
图像标题生成是指通过计算机将图像翻译成描述该图像的标题语句.针对现有图像标题生成任务中,未充分利用图像的局部和全局特征以及时间复杂度较高的问题,本文提出一种基于卷积神经网络(Convolution Neural Networks,CNN)和Transformer的混合结构图像标题生成模型.考虑卷积网络所具有的空间和通道特性,首先将轻量化高精度的注意力ECA与卷积网络CNN进行融合构成注意力残差块,用于从输入图像中提取视觉特征;然后将特征输入到序列模型Trans?former中,在编码器端借助自注意学习来获得所参与的视觉表示,在语言解码器中捕获标题中的细粒度信息以及学习标题序列间的相互作用,进而结合视觉特征逐步得到图像所对应的标题描述.将模型在MSCOCO数据集上进行实验,BLEU-1、BLEU-3、BLEU-4、Meteor和CIDEr指标分别提高了0.3、0.5、0.7、0.4、1.6个百分点.

图像标题、Transformer、通道注意力、卷积神经网络、Encoder-Decoder模型

TP391(计算技术、计算机技术)

陕西省自然科学基础研究计划项目;陕西省教育厅科研计划项目

2023-06-08(万方平台首次上网日期,不代表论文的发表时间)

共5页

8-12

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2023,(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn