期刊专题

10.3969/j.issn.1006-2475.2023.01.006

基于多特征因子融合的中文短文本实体消歧

引用
现有中文短文本实体消歧模型在消歧过程中大多只考虑指称上下文与候选实体描述的语义匹配特征,对同一查询文本中候选实体间的共现特征以及候选实体与实体指称类别相似特征等有效的消歧特征考虑不足.针对这些问题,本文首先利用预训练语言模型获得指称上下文与候选实体描述的语义匹配特征;然后,针对实体嵌入和指称类别嵌入提出共现特征与类别特征;最后,通过融合上述特征实现基于多特征因子融合实体消歧模型.实验结果表明本文提出的共现特征及类别特征在实现实体消歧中的可行性和有效性,以及本文提出的基于多特征因子融合的实体消歧方法能够取得更好的消歧效果.

共现特征、类别特征、多特征因子、多头注意力、Ernie

TP391(计算技术、计算机技术)

国家自然科学基金;江西省教育厅科技项目

2023-03-06(万方平台首次上网日期,不代表论文的发表时间)

共7页

30-36

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2023,(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn