期刊专题

10.3969/j.issn.1006-2475.2022.07.010

一种基于图挖掘的LDA改进算法

引用
LDA作为文本主题识别领域中使用最广泛的模型之一,其基于词袋模型的假设简单化地赋予词汇相同的权重,使得主题分布易向高频词倾斜,影响了识别主题的语义连贯性.本文针对该问题提出一种基于图挖掘的LDA改进算法GoW-LDA,首先基于特征词对在文本中的共现先后关系构建语义图模型,然后利用网络统计特征中节点的加权度,将文本的语义结构特点和关联性以权重修正的形式融入LDA主题建模中.实验结果显示,GoW-LDA相较于传统LDA和基于TF-IDF的LDA,能够大幅降低主题模型的混淆度,提高主题识别的互信息指数,并且有效减少模型的训练时间,为文本主题识别提供了一种新的解决思路.

文本主题识别、图挖掘、潜在狄利克雷分布

TP393(计算技术、计算机技术)

中央高校基本科研业务费专项基金资助项目NJ2019023

2022-08-03(万方平台首次上网日期,不代表论文的发表时间)

共6页

61-66

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2022,(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn