期刊专题

10.3969/j.issn.1006-2475.2022.07.002

基于YOLO v4的车辆目标检测算法

引用
针对车辆目标检测中存在遮挡目标导致检测精度低、小目标检测效果差等问题,提出一种基于YOLO v4改进的目标检测算法YOLO v4-ASC.通过在主干提取网络尾部加入卷积块注意力模块,提升网络模型的特征表达能力;改进损失函数提升网络模型的收敛速度,利用Adam+SGDM优化方法替代原始模型优化方法SGDM,进一步提升模型检测性能.此外,利用K-Means聚类算法优化先验框尺寸大小,并合并交通场景数据集中的car、truck、bus类别为vehicle,将本文问题简化为二分类问题.实验结果表明,本文提出的YOLO v4-ASC目标检测算法在保持原算法检测速度的基础上,AP达到了70.05%,F1-score达到了71%,与原YOLO v4算法相比,AP提升了9.92个百分点,F1-score提升了9个百分点.

YOLO v4、模型优化、卷积块注意力模块

TP391.4(计算技术、计算机技术)

国家自然科学基金U1864204

2022-08-03(万方平台首次上网日期,不代表论文的发表时间)

共7页

8-14

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2022,(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn