期刊专题

10.3969/j.issn.1006-2475.2022.07.001

基于编解码结构的多特征融合眼底图像分割

引用
为解决现有眼底图像分割方法对于细微血管存在低分割精度和低准确率的问题,提出一种基于编解码结构的U-Net改进网络模型.首先对数据进行预处理与扩充,提取绿色通道图像,并将其通过对比度限制直方图均衡化和伽马变换以增强对比度;其次训练集被输入到用于分割的神经网络中,在编码过程加入残差模块,用短跳跃连接将高、低特征信息融合,并利用空洞卷积增加感受野,解码模块加入注意力机制增加对细微血管分割精度;最后利用训练完成的分割模型进行预测得出视网膜血管分割结果.在DRIVE和CHASE-DB1眼底图像数据集上进行对比实验,模型算法的平均准确率、特异性和灵敏度分别达到96.77%和97.22%、98.74%和98.40%、80.93%和81.12%.实验结果表明该算法能够改善微细血管分割准确率及效率不高的问题,对视网膜血管可以进行更准确的分割.

图像处理、眼底图像、血管分割、U型网络、网络优化

TP391(计算技术、计算机技术)

国家自然科学基金61705178

2022-08-03(万方平台首次上网日期,不代表论文的发表时间)

共7页

1-7

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2022,(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn