期刊专题

10.3969/j.issn.1006-2475.2021.11.005

融合注意力与深度因子分解机的时间上下文推荐模型

引用
对于许多在线电商,预测用户购买商品的可能性至关重要.由于用户与商品的交互通常是高维且稀疏的,所以深度因子分解机算法(DeepFM)将因子分解机算法(FM)与深度神经网络(DNN)结合在一起,用FM处理低阶特征组合,用DNN处理高阶特征组合,通过并行的方式组合这2种方法,很好地解决了高维稀疏的问题.但是,它忽略了用户购买商品的先后性问题,也就是时间上下文信息.针对这一缺陷,本文提出一种融合注意力(Attention)与DeepFM的时间上下文推荐模型(DeepAFM),更好地利用用户与商品交互的时间上下文信息,相比较于未加入时间上下文信息的DeepFM模型,AUC提升了1.84%.对比验证结果表明,DeepAFM模型具有更优越的性能.

推荐系统;时间上下文;注意力机制;深度因子分解机

TP311(计算技术、计算机技术)

2021-12-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

22-27

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2021,(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn