期刊专题

10.3969/j.issn.1006-2475.2021.11.002

基于SMOTE和RNN的肾移植排斥反应预测

引用
肾移植手术在当今的应用越来越广泛,对于排斥反应的预测变得更加重要.针对排斥反应数据特点中存在的数据的维度高、数据时序性、样本不均衡等问题,将循环神经网络应用于肾移植排斥反应的预测,本文提出一种结合SMOTE(Synthetic Minority Over-sampling Technique)以及RNN(Recurrent Neural Network)的算法.该方法先处理数据,降低正负样本的不平衡度,且解决样本量不足的问题,再根据RNN的学习过程进行关键参数调整、优化.经过实验发现,该方法可以有效提升正负分类的准确率,与传统的马尔可夫时间序列预测算法相比,准确率提高了16.7%,传统RNN训练经过优化后,相对错误率下降了5.03%,可以使用该方法进行肾移植排斥反应的有效预测.

肾移植排斥反应;序列分类;循环神经网络;SMOTE

TP391(计算技术、计算机技术)

2021-12-13(万方平台首次上网日期,不代表论文的发表时间)

共5页

7-11

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2021,(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn