期刊专题

10.3969/j.issn.1006-2475.2021.10.018

基于改进SRGAN的OFDM信道估计方法

引用
在正交频分复用(OFDM)系统的信道估计过程中,传统信道插值算法是建立在假设导频附近处的估计值存在关联的基础上,当信道特征因无线信道的时变、频变特性而不连续时,估计结果将不理想.针对这一问题,本文引入超分辨率重建模型SRGAN的改进模型——SRWGAN,替代信道估计中的插值处理.在SRWGAN模型中,将导频处的最小二乘(LS)估计值类比于低分辨率图像中的像素点,先通过卷积网络提取信道特征,再通过多个残差网络学习映射关系,然后经上采样层放大,最后通过判别网络WGAN不断判别并提升估计效果.实验结果表明,基于SRWGAN的信道估计效果优于传统的信道估计算法,且与同类型的SRCNN模型相比,同等条件下,当误码率相同时,信噪比(SNR)提升约3 dB,当MSE值相同时,SNR提升约5 dB.

深度学习;OFDM;信道估计;SRWGAN

TN929.53

2021-10-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

112-118

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2021,(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn