期刊专题

10.3969/j.issn.1006-2475.2021.10.003

基于改进布谷鸟搜索的k-means算法的离群点检测

引用
为了解决k-means算法的离群点检测容易受到初始聚类中心的影响陷入局部最优的问题,本文提出一种基于改进布谷鸟搜索的k-means算法的离群点检测方法.首先,对原始布谷鸟搜索算法中的发现概率和莱维飞行步长做自适应策略改进并进行实验仿真;其次讨论改进后的布谷鸟搜索算法的收敛性问题;最后将改进后的布谷鸟搜索算法与k-means的离群点检测算法融合成一种新的离群点检测算法——基于改进布谷鸟搜索的k-means算法的离群点检测.通过对UCI数据集进行仿真实验,结果表明,本文算法不仅精确度方面有着明显优势,而且在3个数据集上收敛速度均有改善,可有效地抑制k-means算法的离群点检测容易陷入局部最优的问题,缩短运行时间.

离群点检测;k-means算法;布谷鸟搜索算法;收敛性

TP391(计算技术、计算机技术)

国家自然科学基金资助项目61074005

2021-10-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

15-22

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2021,(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn